De novo assembly of complex genomes Michael Schatz

Sept 18, 2012 Statistical Bioinformatics, Purdue University

Outline

- I. Genome assembly by analogy
- 2. Hybrid error correction and assembly
- 3. Very recent sequencing results

Shredded Book Reconstruction

Dickens accidentally shreds the first printing of <u>A Tale of Two Cities</u>
– Text printed on 5 long spools

It ·	was	thevb	esthof	bes tinfes ini	esyais tilas	whoers troor	of times,	it was the	a gge b	fv ivsitschom ij	t itvæas h	e athe afto	ofisoolistanes	s,
						_			_					
It	was	theva	esthe	of times,	t was the	ne wors	t of times	, it was th	e taloge aoge	wisotatio	nwit s th	iewagetbfefa	gläsdfuleolishr	less,
T+ -	woo	flb er	abdet	hftimetijit	wood with	a lazoratura	ftimesoi	t it was the	a ore of t	mindom	it was	the are of	ithelighnes	
11	was	uuwa	SULLEL	Destinestin	waa waa	CINCONDU S		, it was ui	t age of	wisuom, i	It was		112010102831103	5,
It	was	t tha	sbielsee	besime sint	es, was ab	etheonstre	f times ,es	it was the	e age of	vi sciscio ni	t, istavas	tehæg age f fo	olisbolisbnes	s,
				1										
It	w	alst tilhæ	esbtelset	b£sim€sin	eit, utawab	etheowstre	of of times	, it was th	e age of o	ofisodomi	t, ivtavsatsh	thege outgeto	ofistoolisstanes	s,

- How can he reconstruct the text?
 - 5 copies x 138, 656 words / 5 words per fragment = 138k fragments
 - The short fragments from every copy are mixed together
 - Some fragments are identical

Greedy Reconstruction

The repeated sequence make the correct reconstruction ambiguous

• It was the best of times, it was the [worst/age]

Model sequence reconstruction as a graph problem.

de Bruijn Graph Construction

- $G_k = (V, E)$
 - V = All length-k subfragments (k < l)
 - E = Directed edges between consecutive subfragments
 - Nodes overlap by k-1 words

- Locally constructed graph reveals the global sequence structure
 - Overlaps between sequences implicitly computed

de Bruijn, 1946 Idury and Waterman, 1995 Pevzner, Tang, Waterman, 2001

de Bruijn Graph Assembly

Counting Eulerian Tours $A \rightarrow B \rightarrow D$ ARBRCRDor ARCRBRD

Generally an exponential number of compatible sequences

- Value computed by application of the BEST theorem (Hutchinson, 1975)

$$\mathcal{W}(G,t) = (\det L) \left\{ \prod_{u \in V} (r_u - 1)! \right\} \left\{ \prod_{(u,v) \in E} a_{uv}! \right\}^{-1}$$

L = n x n matrix with r_u - a_{uu} along the diagonal and $-a_{uv}$ in entry uv
 $r_u = d^+(u) + l$ if $u = t$, or $d^+(u)$ otherwise
 a_{uv} = multiplicity of edge from u to v

Assembly Complexity of Prokaryotic Genomes using Short Reads. Kingsford C, Schatz MC, Pop M (2010) *BMC Bioinformatics*.

N50 size

Def: 50% of the genome is in contigs as large as the N50 value


```
N50 size = 30 \text{ kbp}
```

```
(300k+100k+45k+45k+30k = 520k \ge 500kbp)
```

Note:

N50 values are only meaningful to compare when base genome size is the same in all cases

Assembly Applications

Novel genomes

Metagenomes

Sequencing assays

- Transcript assembly
- Structural variations
- Haplotype analysis

Why are genomes hard to assemble?

- **I.** Biological:
 - (Very) High ploidy, heterozygosity, repeat content

2. Sequencing:

- (Very) large genomes, imperfect sequencing

3. Computational:

- (Very) Large genomes, complex structure

4. Accuracy:

- (Very) Hard to assess correctness

Ingredients for a good assembly

High coverage is required

- Oversample the genome to ensure every base is sequenced with long overlaps between reads
- Biased coverage will also fragment assembly

Reads & mates must be longer than the repeats

- Short reads will have *false overlaps* forming hairball assembly graphs
- With long enough reads, assemble entire chromosomes into contigs

Errors obscure overlaps

- Reads are assembled by finding kmers shared in pair of reads
- High error rate requires very short seeds, increasing complexity and forming assembly hairballs

Current challenges in de novo plant genome sequencing and assembly Schatz MC, Witkowski, McCombie, WR (2012) *Genome Biology*. 12:243

Hybrid Sequencing

Illumina Sequencing by Synthesis

High throughput (60Gbp/day) High accuracy (~99%) Short reads (~100bp)

Pacific Biosciences

SMRT Sequencing

Lower throughput (600Mbp/day) Lower accuracy (~85%) Long reads (1-2kbp+)

SMRT Sequencing

Imaging of florescent phospholinked labeled nucleotides as they are incorporated by a polymerase anchored to a Zero-Mode Waveguide (ZMW).

Time

http://www.pacificbiosciences.com/assets/files/pacbio_technology_backgrounder.pdf

• Standard sequencing

- Long inserts so that the polymerase can synthesize along a single strand

• Circular consensus sequencing

- Short inserts, so polymerase can continue around the entire SMRTbell multiple times and generate multiple sub-reads from the same single molecule.

SMRT Sequencing Data

Yeast (Pre-release Chemistry / 2010)

65 SMRT cells 734,151 reads after filtering Mean: 642.3 +/- 587.3 Median: 553 Max: 8,495

Sample of 100k reads aligned with BLASR requiring >100bp alignment Average overall accuracy: 83.7%, 11.5% insertions, 3.4% deletions, 1.4% mismatch

Read Position

Consistent quality across the entire read

- Uniform error rate, no apparent biases for GC/motifs
- Sampling artifacts at beginning and ends of alignments

Consensus Quality: Probability Review

Roll *n* dice => What is the probability that at least half are 6's

n	Min to Lose	Losing Events	P(Lose)
I		1/6	16.7%
2		P(lof 2) + P(2 of 2)	30.5%
3		P(2 of 3) + P(3 of 3)	7.4%
4		P(2 of 4) + P(3 of 4) + P(4 of 4)	13.2%
5		P(3 of 5) + P(4 of 5) + P(5 of 5)	3.5%
n	ceil(n/2)	$\sum_{i=\lceil n/2 \rceil}^{n} P(i \ of \ n) = \sum_{i=\lceil n/2 \rceil}^{n} \binom{n}{i} (p)^{i} (1-p)^{n-i}$	

Consensus Accuracy and Coverage

Coverage can overcome random errors

- Dashed: error model from binomial sampling; solid: observed accuracy
- For same reason, CCS is extremely accurate when using 5+ subreads

$$CNS Error = \sum_{i=\lceil c/2 \rceil}^{c} \binom{c}{i} (e)^{i} (1-e)^{n-i}$$

PacBio Error Correction

http://wgs-assembler.sf.net

- I. Correction Pipeline
 - I. Map short reads (SR) to long reads (LR)
 - 2. Trim LRs at coverage gaps
 - 3. Compute consensus for each LR

2. Error corrected reads can be easily assembled, aligned

Hybrid error correction and de novo assembly of single-molecule sequencing reads. Koren, S, Schatz, MC, et al. (2012) *Nature Biotechnology*. doi:10.1038/nbt.2280

Error Correction Results

Correction results of 20x PacBio coverage of E. coli K12 corrected using 50x Illumina

Celera Assembler

http://wgs-assembler.sf.net

- I. Pre-overlap
 - Consistency checks
- 2. Trimming
 - Quality trimming & partial overlaps
- 3. Compute Overlaps
 - Find high quality overlaps
- 4. Error Correction
 - Evaluate difference in context of overlapping reads
- 5. Unitigging
 - Merge consistent reads
- 6. Scaffolding
 - Bundle mates, Order & Orient
- 7. Finalize Data
 - Build final consensus sequences

SMRT-Assembly Results

Typesine .	Telefage	Automics inp	Annaly by	# Campo	the Congliagh	
Lanial MIRAL	Status INI 2016					
india Wass (20)	Auto-Pick (25)		48.640			#-441#4E-0898/1
1.44.81	Number 1976 1986	10-11	110240		****	100.000/00.001082.00021
india Mass (198)	Auto Matt IN		1.007.020	1.0	39.99,08.26	him-ansatzia-
	And ND Parity Fill Streets VO. Mile		100.06		1010-0410-	\$1.000-00-00-00.0%/*
E ANY DRIVEN	Pulle-U.S.WI	530440	100100		101515	1410
milei 127 au 1990.	Aulter 20, PEA commod to 20, 028		1.07 ***		10124	18716
	Aven Technol 2018 - 1119 220-		10410		set (e)	17.94
	Radia MA FMA committee MA COL		1100 000		1094407	19-00
	Ann Facility Pile # 105 - 123 200		1-0108		1.00940	10.04
	Manually Consenses in LocAle Assessed of		1.011.011		60.00	88.00
Longitude States	(Same 101 201g	11110	10.014.00		39.1010114	terror period
index 171 may 1998.	Baller Floit UX		10100404	- 18	21400-01704	al any party manual a
	Ball Rolls, Phil 171 - Dania VX 1884		10,000,000	10	30 66/30 %	AT SOLVE TRUTCHER:*
Bilarine adda	Barrier, Well, COURSERING patient and \$10,000 management	1004	100100-00	24.680	1.999.000	6.00
	encoded and a local state of the local state of the local state.		100.000.000	14.75	10.09	15.03
1000 W. No. 11976	and in all a the first their to first.		1010444	11.00	Citize and	-

Hybrid assembly results using error corrected PacBio reads Meets or beats Illumina-only or 454-only assembly in every case

Improved Gene Reconstruction

FOXP2 assembled on a single contig

Transcript Alignment

- Long-read single-molecule sequencing has potential to directly sequence full length transcripts
 - Raw reads and raw alignments (red) have many spurious indels inducing false frameshifts and other artifacts
 - Error corrected reads almost perfectly match the genome, pinpointing splice sites, identifying alternative splicing
- New collaboration with Gingeras Lab looking at splicing in human

PacBio Technology Roadmap

Internal Roadmap has made steady progress towards improving read length and throughput

Very recent improvements:

I. Improved enzyme: Maintains reactions longer

- "Hot Start" technology: Maximize subreads
 - . MagBead loading: Load longest fragments

PACIFIC BIOSCIENCES®

PACIFIC BIOSCIENCES® CONFIDENTIAL

Preliminary Rice Assemblies

In collaboration with McCombie & Ware labs @ CSHL

Single Molecule Sequencing Summary

PacBio RS has capabilities not found in any other technology

- Substantially longer reads -> span repeats
- Unbiased sequence coverage -> close sequencing gaps
- Single molecule sequencing -> haplotype phasing, alternative splicing

Long reads enables highest quality de novo assembly

- Longer reads have more information than shorter reads
- Because the errors are random we can compensate for them
- One chromosome, one contig achieved in microbes

Exciting developments on the horizon

- Longer reads, higher throughput PacBio
- Nanopore Sequencing

Acknowledgements

Schatz Lab Giuseppe Narzisi Shoshana Marcus Rob Aboukhalil Mitch Bekritsky Charles Underwood James Gurtowski Alejandro Wences

Hayan Lee Rushil Gupta Avijit Gupta Shishir Horane Deepak Nettem Varrun Ramani Eric Biggers CSHL Hannon Lab Iossifov Lab Levy Lab Lippman Lab Lyon Lab Martienssen Lab McCombie Lab Ware Lab Wigler Lab

<u>NBACC</u> Adam Phillippy Sergey Koren

<u>JHU/UMD</u> Steven Salzberg Mihai Pop Ben Langmead Cole Trapnell

Thank You!

Want to push the frontier of bioinformatics, biotechnology, & genetics? http://schatzlab.cshl.edu/apply/

Long Read Advantages

(a) Long reads close sequencing gaps

(b) Long readsassemble acrosslong repeats

(c) Long reads span complex microsatellites

Theoretical Benefits of Hot Start Sequencing

Magnetic Bead Enzyme-Template Complex Loading

Multiple complexes attached to magnetic beads that are much larger than individual ZMWs

Rotate magnet to evenly disperse beads across entire chip surface

Pre-Deposition: Complex loaded beads in solution

PACIFIC BIOSCIENCES[™] CONFIDENTIAL

(II) Introduce magnet: Bead complexes pulled to chip surface

MBS (MagBead Station)

Improvements to Sample Prep

PACIFIC BIOSCIENCES® CONFIDENTIAL

