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Outline 

1.  Genome assembly by analogy 

2.  Hybrid error correction and assembly 

3.  Very recent sequencing results 

 



Shredded Book Reconstruction 

•  Dickens accidentally shreds the first printing of A Tale of Two Cities 
–  Text printed on 5 long spools 

•  How can he reconstruct the text? 
–  5 copies x 138, 656 words / 5 words per fragment = 138k fragments 
–  The short fragments from every copy are mixed together 
–  Some fragments are identical 

It was the best of of times, it was the times, it was the worst age of wisdom, it was the age of foolishness, … 

It was the best worst of times, it was of times, it was the the age of wisdom, it was the age of foolishness, 

It was the the worst of times, it  best of times, it was was the age of wisdom, it was the age of foolishness, … 

It was was the worst of times, the best of times, it it was the age of wisdom, it was the age of foolishness, … 

It it was the worst of was the best of times, times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, … 

It was the best of of times, it was the times, it was the worst age of wisdom, it was the age of foolishness, … 

It was the best worst of times, it was of times, it was the the age of wisdom, it was the age of foolishness, 

It was the the worst of times, it  best of times, it was was the age of wisdom, it was the age of foolishness, … 

It was was the worst of times, the best of times, it it was the age of wisdom, it was the age of foolishness, … 

It it was the worst of was the best of times, times, it was the age of wisdom, it was the age of foolishness, … 



Greedy Reconstruction 
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 The repeated sequence make the correct 
reconstruction ambiguous 
•  It was the best of times, it was the [worst/age] 

 Model sequence reconstruction as a graph problem. 



de Bruijn Graph Construction 

•  Gk = (V,E) 
•  V = All length-k subfragments (k < l) 
•  E = Directed edges between consecutive subfragments 

•  Nodes overlap by k-1 words 

•  Locally constructed graph reveals the global sequence structure 
•  Overlaps between sequences implicitly computed 

It was the best  was the best of It was the best of  

Original Fragment Directed Edge 

de Bruijn, 1946 
Idury and Waterman, 1995 
Pevzner, Tang, Waterman, 2001 



de Bruijn Graph Assembly 
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After graph construction, 
try to simplify the graph as 

much as possible 



de Bruijn Graph Assembly 
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It was the best of times, it 

 of times, it was the 

it was the worst of times, it 

it was the age of 
the age of wisdom, it was the After graph construction, 

try to simplify the graph as 
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 Generally an exponential number of compatible sequences 
–  Value computed by application of the BEST theorem (Hutchinson, 1975) 

 
 
          L = n x n matrix with ru-auu along the diagonal and -auv in entry uv 

   ru = d+(u)+1 if u=t, or d+(u) otherwise 
   auv = multiplicity of edge from u to v 

Counting Eulerian Tours 

ARBRCRD 
or 

ARCRBRD 
A R D 

B 

C 

Assembly Complexity of Prokaryotic Genomes using Short Reads. 
Kingsford C, Schatz MC, Pop M (2010) BMC Bioinformatics.  



N50 size 
Def: 50% of the genome is in contigs as large as the N50 value 

Example:  1 Mbp genome 
 
 
 
 
 

 N50 size = 30 kbp  
  (300k+100k+45k+45k+30k = 520k >= 500kbp) 

 
Note: 

N50 values are only meaningful to compare when base genome 
size is the same in all cases 

1000 

300 45 30 100 20 15 15 10 . . . . . 45 

50% 



Assembly Applications 
Novel genomes 

Metagenomes 

Sequencing assays 
•  Transcript assembly 
•  Structural variations 
•  Haplotype analysis 
•  … 



Why are genomes hard to assemble? 

1.  Biological:  
–  (Very) High ploidy, heterozygosity, repeat content 

2.  Sequencing:  
–  (Very) large genomes, imperfect sequencing 

3.  Computational:  
–  (Very) Large genomes, complex structure 

4.  Accuracy:  
–  (Very) Hard to assess correctness 
 



Ingredients for a good assembly 

Current challenges in de novo plant genome sequencing and assembly 
Schatz MC, Witkowski, McCombie, WR (2012) Genome Biology. 12:243 

Coverage 

High coverage is required 
–  Oversample the genome to ensure 

every base is sequenced with long 
overlaps between reads 

–  Biased coverage will also fragment 
assembly 

Lander Waterman Expected Contig Length vs Coverage

Read Coverage

E
xp

e
ct

e
d

 C
o

n
tig

 L
e

n
g

th
 (

b
p

)

0 5 10 15 20 25 30 35 40

1
0

0
1

k
1

0
k

1
0

0
k

1
M

+dog mean

+dog N50

+panda mean

+panda N50

1000 bp

710 bp

250 bp

100 bp

52 bp

30 bp

Read Coverage 

E
xp

ec
te

d 
C

on
ti

g 
Le

ng
th

 

Read Length 

Reads & mates must be longer 
than the repeats 
–  Short reads will have false overlaps 

forming hairball assembly graphs 
–  With long enough reads, assemble 

entire chromosomes into contigs 

Quality 

Errors obscure overlaps 
–  Reads are assembled by finding 

kmers shared in pair of reads 
–  High error rate requires very short 

seeds, increasing complexity and 
forming assembly hairballs 



Hybrid Sequencing 

Illumina 
Sequencing by Synthesis 

 
High throughput (60Gbp/day) 

High accuracy (~99%) 
Short reads (~100bp) 

Pacific Biosciences 
SMRT Sequencing 

 
Lower throughput (600Mbp/day) 

Lower accuracy (~85%) 
Long reads (1-2kbp+) 

  



SMRT Sequencing 

Time 

In
te

ns
ity

 

http://www.pacificbiosciences.com/assets/files/pacbio_technology_backgrounder.pdf 

Imaging of florescent phospholinked labeled nucleotides as they are incorporated 
by a polymerase anchored to a Zero-Mode Waveguide (ZMW). 



SMRT Read Types 

http://www.pacificbiosciences.com/assets/files/pacbio_technology_backgrounder.pdf 

•  Standard sequencing 
–  Long inserts so that the polymerase can synthesize along a single strand  

•  Circular consensus sequencing 
–  Short inserts, so polymerase can continue around the entire SMRTbell multiple 

times and generate multiple sub-reads from the same single molecule. 



SMRT Sequencing Data 
TTGTAAGCAGTTGAAAACTATGTGTGGATTTAGAATAAAGAACATGAAAG!
||||||||||||||||||||||||| ||||||| |||||||||||| |||!
TTGTAAGCAGTTGAAAACTATGTGT-GATTTAG-ATAAAGAACATGGAAG!
!
ATTATAAA-CAGTTGATCCATT-AGAAGA-AAACGCAAAAGGCGGCTAGG!
| |||||| ||||||||||||| |||| | |||||| |||||| ||||||!
A-TATAAATCAGTTGATCCATTAAGAA-AGAAACGC-AAAGGC-GCTAGG!
!
CAACCTTGAATGTAATCGCACTTGAAGAACAAGATTTTATTCCGCGCCCG!
| |||||| |||| ||  ||||||||||||||||||||||||||||||||!
C-ACCTTG-ATGT-AT--CACTTGAAGAACAAGATTTTATTCCGCGCCCG!
!
TAACGAATCAAGATTCTGAAAACACAT-ATAACAACCTCCAAAA-CACAA!
| ||||||| |||||||||||||| || ||    |||||||||| |||||!
T-ACGAATC-AGATTCTGAAAACA-ATGAT----ACCTCCAAAAGCACAA!
!
-AGGAGGGGAAAGGGGGGAATATCT-ATAAAAGATTACAAATTAGA-TGA!
 ||||||   ||     |||||||| || |||||||||||||| || |||!
GAGGAGG---AA-----GAATATCTGAT-AAAGATTACAAATT-GAGTGA!
!
ACT-AATTCACAATA-AATAACACTTTTA-ACAGAATTGAT-GGAA-GTT!
||| ||||||||| | ||||||||||||| ||| ||||||| |||| |||!
ACTAAATTCACAA-ATAATAACACTTTTAGACAAAATTGATGGGAAGGTT!
!
TCGGAGAGATCCAAAACAATGGGC-ATCGCCTTTGA-GTTAC-AATCAAA!
|| ||||||||| ||||||| ||| |||| |||||| ||||| |||||||!
TC-GAGAGATCC-AAACAAT-GGCGATCG-CTTTGACGTTACAAATCAAA!
!
ATCCAGTGGAAAATATAATTTATGCAATCCAGGAACTTATTCACAATTAG!
||||||| |||||||||  |||||| ||||| ||||||||||||||||||!
ATCCAGT-GAAAATATA--TTATGC-ATCCA-GAACTTATTCACAATTAG!
!

Sample of 100k reads aligned with BLASR requiring >100bp alignment 
Average overall accuracy: 83.7%, 11.5% insertions, 3.4% deletions, 1.4% mismatch 

Yeast  
(Pre-release Chemistry / 2010) 

 

65 SMRT cells  
734,151 reads after filtering 

Mean: 642.3 +/- 587.3  
Median: 553 Max: 8,495 
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Read Quality 

Consistent quality across the entire read 
•  Uniform error rate, no apparent biases for GC/motifs 
•  Sampling artifacts at beginning and ends of alignments 
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Consensus Quality: Probability Review 
Roll n dice => What is the probability that at least half are 6’s 

P(3 of 5) + P(4 of 5) + P(5 of 5) 5 3.5% 

1/6 1 16.7% 

n Min to Lose Losing Events P(Lose) 

4 13.2% P(2 of 4) + P(3 of 4) + P(4 of 4) 

3 7.4% P(2 of 3) + P(3 of 3) 

2 30.5% P(1of 2) + P(2 of 2) 
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Consensus Accuracy and Coverage 

Coverage can overcome random errors 
•  Dashed: error model from binomial sampling; solid: observed accuracy  
•  For same reason, CCS is extremely accurate when using 5+ subreads 
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1.  Correction Pipeline 
1.  Map short reads (SR) to long reads (LR) 
2.  Trim LRs at coverage gaps 
3.  Compute consensus for each LR 

2.  Error corrected reads can be easily assembled, aligned 

PacBio Error Correction 

Hybrid error correction and de novo assembly of single-molecule sequencing reads. 
Koren, S, Schatz, MC, et al. (2012) Nature Biotechnology. doi:10.1038/nbt.2280 

http://wgs-assembler.sf.net 



Error Correction Results 

Correction results of 20x PacBio coverage of E. coli K12 corrected using 50x Illumina 



Celera Assembler 

1.  Pre-overlap 
–  Consistency checks 
 

2.  Trimming 
–  Quality trimming & partial overlaps 

3.  Compute Overlaps 
–  Find high quality overlaps 

4.  Error Correction 
–  Evaluate difference in context of 

overlapping reads 

5.  Unitigging 
–  Merge consistent reads 

6.  Scaffolding 
–  Bundle mates, Order & Orient 

7.  Finalize Data 
–  Build final consensus sequences 

 

http://wgs-assembler.sf.net 



SMRT-Assembly Results 

Hybrid assembly results using error corrected PacBio reads 
Meets or beats Illumina-only or 454-only assembly in every case 



Improved Gene Reconstruction 

Scale
chr1A:

RepeatMasker

200 kb taeGut1
25400000 25500000 25600000 25700000

Illumina

454

454-PBcR

454-PBcR-Illumina
Assembly from Fragments

RefSeq Genes

GC Percent in 5-Base Windows

Repeating Elements by RepeatMasker

FOXP2
GC Percent

FOXP2 assembled on a single contig 



Transcript Alignment 

•  Long-read single-molecule sequencing has potential to directly 
sequence full length transcripts 
–  Raw reads and raw alignments (red) have many spurious indels inducing 

false frameshifts and other artifacts 
–  Error corrected reads almost perfectly match the genome, pinpointing 

splice sites, identifying alternative splicing 

•  New collaboration with Gingeras Lab looking at splicing in human 
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PacBio Technology Roadmap 

2010 

LPR 

FCR 

ECR2 

C2 

2011 2012 2009 2008 

1734 1012 453 

Release 
Candidate 

Internal Roadmap has made 
steady progress towards 
improving read length and 
throughput 
 
Very recent improvements: 
1.  Improved enzyme: 

Maintains reactions longer 

2.  “Hot Start” technology: 

Maximize subreads 

3.  MagBead loading: 

Load longest fragments 



PacBio Rice Sequencing Original Raw Read Length Histogram
n=3659007 median=639 mean=824 max=10008
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Median=639 Mean=824 Max=10,008 

C2.5 Chemistry – Summer 2012 
Median=2231 Mean=3290 Max=24,405 
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Preliminary Rice Assemblies 
Assembly Contig N50 

Illumina Fragments 
50x 2x100bp @ 180 
 

3925 

Illumina Mates 
50x 2x100bp @ 180 
36x 2x50bp @ 2100 
51x 2x50bp @ 4800  
 

13696 

MiSeq Fragments 
23x 459bp   
8x 2x251bp @ 450 
 

6444 

PBeCR Reads 
6.3x 2146bp ** MiSeq for correction 
 

13600 

PBeCR + Mates 
6.3x 2146bp ** MiSeq for correction 
51x 2x50bp @ 4800  
 

In Progress 

In collaboration with McCombie & Ware labs @ CSHL 



Single Molecule Sequencing Summary 

PacBio RS has capabilities not found in any other technology 
•  Substantially longer reads -> span repeats 
•  Unbiased sequence coverage -> close sequencing gaps 
•  Single molecule sequencing -> haplotype phasing, alternative splicing 

Long reads enables highest quality de novo assembly 
•  Longer reads have more information than shorter reads 
•  Because the errors are random we can compensate for them 
•  One chromosome, one contig achieved in microbes 
 

Exciting developments on the horizon 
•  Longer reads, higher throughput PacBio 
•  Nanopore Sequencing 
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Thank You! 
Want to push the frontier of bioinformatics, biotechnology, & genetics? 

http://schatzlab.cshl.edu/apply/ 



Long Read Advantages 

a 

b 

c 

(a) Long reads close 
sequencing gaps 

 
(b) Long reads  

assemble across 
long repeats 

(c) Long reads span 
complex 
microsatellites 



Theoretical Benefits of Hot Start Sequencing 

10 kB SMRTbell  

3-4 kB Walk in No Enzyme Activity 

Mapping the Reads to a Reference 

10 kb contiguous coverage 6.5 kb contiguous coverage 

Data Collection  

Hot Start No Hot Start 
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                   Magnet 
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Multiple complexes attached to 
magnetic beads that are much 
larger than individual ZMWs 

ZMW 

Magnetic Bead Enzyme-Template Complex Loading 

Mag 

Magnetic  
Bead 

Enzyme-Template  
Complex 

Rotate magnet to evenly disperse 
beads across entire chip surface 
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Diffusion MBS 

Improvements to Sample Prep 


